Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Lanthanide complexes of 2,2'-oxydiacetate: $Na_5[M(C_4H_4O_5)_3](BF_4)_2$ -6H₂O (*M* = Nd, Sm or Gd)

Louis J. Farrugia et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Lanthanide complexes of 2,2'-oxydiacetate: $Na_5[M(C_4H_4O_5)_3](BF_4)_2$ - $6H_2O$ (*M* = Nd, Sm or Gd)

Louis J. Farrugia,^a* Robert D. Peacock^a and Brian Stewart^b

^aDepartment of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, and ^bDepartment of Chemistry and Chemical Engineering, University of Paisley, Paisley PA1 2BE, Scotland Correspondence e-mail: louis@chem.gla.ac.uk

Received 26 June 2000 Accepted 4 September 2000

Data validation number: IUC0000241

The three title complexes, namely pentasodium tris(2,2'oxydiacetato)neodymium(III) bis(tetrafluoroborate) hexahydrate and its samarium(III) and gadolinium(III) analogues, (I)-(III), respectively, are isomorphous and isostructural and have crystallographic D_3 symmetry. The lanthanide metal ions are nine-coordinate, binding to three O atoms of three oxodiacetate ligands. One Na⁺ ion is octahedrally coordinated to six O atoms and the other Na⁺ ion is octahedrally coordinated to four O atoms and two F atoms. The structure is effectively an infinite three-dimensional polymer, consistent with the exceptional crystal quality. The racemic solutions spontaneously resolve on crystallization. For the individual crystals selected for structural analysis, the Nd and Sm complexes have the Λ configuration, while the Gd complex has the Δ configuration. The lanthanide-oxygen distances show the expected contraction of *ca* 0.02 Å with increasing atomic number for the lanthanide metal.

Experimental

The three title complexes were synthesized in an identical manner. The oxide M_2O_3 (0.5 mmol) (M = Nd, Sm or Gd) was stirred in an aqueous solution of diglycollic acid (3.0 mmol in 30 ml water) and sodium bicarbonate (3.0 mmol). After an hour, NaBF₄ (2.0 mmol) was added, and the solution allowed to evaporate in air, yielding large

well formed crystals of the complexes. Small samples for the crystallographic analyses were cleaved from larger crystals.

Compound (I)

Crystal data

Na₅[Nd(C₄H₄O₅)₃](BF₄)₂·6H₂O $M_r = 937.12$ Trigonal, *R*32 a = 9.7508 (7) Å c = 28.177 (2) Å V = 2320.1 (3) Å³ Z = 3 $D_x = 2.012$ Mg m⁻³

Data collection

Enraf–Nonius CAD-4 diffractometer Non-profiled ω scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.425, T_{\max} = 0.834$ 1134 measured reflections 1001 independent reflections 1001 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 R(F) = 0.022 $wR(F^2) = 0.055$ S = 1.1331001 reflections 77 parameters H-atom parameters constrained

Compound (II)

Crystal data

Na₅[Sm(C₄H₄O₅)₃](BF₄)₂·6H₂O $M_r = 943.23$ Trigonal, R32 a = 9.7223 (11) Å c = 28.0728 (14) Å V = 2298.0 (4) Å³ Z = 3 $D_x = 2.045$ Mg m⁻³ Mo K α radiation

Data collection

Enraf–Nonius CAD-4 diffractometer Non-profiled ω scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.352, T_{\max} = 0.427$ 2301 measured reflections 1085 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 R(F) = 0.014 $wR(F^2) = 0.037$ S = 1.1331085 reflections 78 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0227P)^2 + 0.0430P]$ $where P = (F_o^2 + 2F_c^2)/3$ Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 18.5-21.2^{\circ}$ $\mu = 1.88 \text{ mm}^{-1}$ T = 291 (2) K Cleaved from large crystal, violet $0.55 \times 0.45 \times 0.10 \text{ mm}$

 $\begin{aligned} R_{\text{int}} &= 0.030\\ \theta_{\text{max}} &= 29.96^{\circ}\\ h &= -1 \rightarrow 13\\ k &= -11 \rightarrow 1\\ l &= -3 \rightarrow 39\\ 3 \text{ standard reflections}\\ \text{frequency: } 120 \text{ min}\\ \text{intensity decay: none} \end{aligned}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0427P)^2 \\ &+ 0.7263P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.51 \ {\rm e} \ {\rm \AA}^{-3} \\ &{\rm Absolute \ structure: \ Flack \ (1983),} \\ &121 \ {\rm Friedel \ pairs} \\ &{\rm Flack \ parameter} = -0.010 \ (18) \end{split}$$

Cell parameters from 25 reflections $\theta = 20.93-22.27^{\circ}$ $\mu = 2.12 \text{ mm}^{-1}$ T = 291 (2) K Irregular block cleaved from larger crystal, colourless $0.6 \times 0.4 \times 0.4 \text{ mm}$

 $\begin{aligned} R_{\text{int}} &= 0.025\\ \theta_{\text{max}} &= 29.98^{\circ}\\ h &= -12 \rightarrow 1\\ k &= -12 \rightarrow 1\\ l &= -39 \rightarrow 39\\ 3 \text{ standard reflections}\\ \text{frequency: } 120 \text{ min}\\ \text{intensity decay: } 2\% \end{aligned}$

```
\begin{array}{l} (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction correction: $SHELXL97$} \\ {\rm Extinction coefficient: $0.0034 (2)$} \\ {\rm Absolute structure: Flack (1983), $209$ Friedel pairs} \\ {\rm Flack parameter} = -0.014 (11) \end{array}
```

Compound (III)

Crystal data

$$\begin{split} &\text{Na}_5[\text{Gd}(\text{C}_4\text{H}_4\text{O}_5)_3](\text{BF}_4)_2\cdot 6\text{H}_2\text{O} \\ &M_r = 950.13 \\ &\text{Trigonal, } R32 \\ &a = 9.7041 \ (10) \text{ Å} \\ &c = 28.025 \ (6) \text{ Å} \\ &V = 2285.5 \ (6) \text{ Å}^3 \\ &Z = 3 \\ &D_x = 2.071 \text{ Mg m}^{-3} \end{split}$$

Data collection

Enraf–Nonius CAD-4 diffractometer Non-profiled ω scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.336, T_{max} = 0.433$ 2033 measured reflections 1078 independent reflections 1078 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 R(F) = 0.012 $wR(F^2) = 0.032$ S = 1.0731078 reflections 78 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0226P)^2 + 0.5279P]$ where $P = (F_o^2 + 2F_c^2)/3$ Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 12.1-15.2^{\circ}$ $\mu = 2.381 \text{ mm}^{-1}$ T = 291 (2) K Prism, colourless $0.50 \times 0.45 \times 0.35 \text{ mm}$

 $R_{int} = 0.013$ $\theta_{max} = 29.98^{\circ}$ $h = -13 \rightarrow 1$ $k = -1 \rightarrow 11$ $l = -39 \rightarrow 39$ 3 standard reflections frequency: 120 min intensity decay: 3%

 $\begin{array}{l} (\Delta/\sigma)_{\rm max}=0.001\\ \Delta\rho_{\rm max}=0.38~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.26~{\rm e}~{\rm \AA}^{-3}\\ {\rm Extinction~correction:~SHELXL97}\\ {\rm Extinction~coefficient:~0.00258~(15)}\\ {\rm Absolute~structure:~Flack~(1983),}\\ 206~{\rm Friedel~pairs}\\ {\rm Flack~parameter}=-0.005~(10) \end{array}$

The methylene H atoms were placed in calculated positions (C– H = 0.96 Å) and refined with a riding model. The initial positions of the H atoms of the water molecules were determined from a difference Fourier map and the H atoms were then refined with a riding model and a common isotropic displacement parameter. All calculations were carried out using the *WinGX* package (Farrugia, 1999).

For all compounds, data collection: *CAD*-4 *EXPRESS* (Enraf-Nonius, 1994); cell refinement: *CAD*-4 *EXPRESS*; data reduction: *XCAD*4 (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We thank the EPSRC for funds towards the purchase of a diffractometer.

References

- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst, A24, 351– 359.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.