Crystal Structure

Communications

ISSN 0108-2701

Lanthanide complexes of 2,2'-oxydiacetate: $\quad \mathrm{Na}_{5}\left[\mathrm{M}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}$.-
$\mathbf{6 H} \mathbf{H}_{2} \mathbf{O}$ ($M=\mathrm{Nd}, \mathrm{Sm}$ or $\mathbf{G d}$)

Louis J. Farrugia et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Lanthanide complexes of 2,2'-oxydiacetate: $\mathrm{Na}_{5}\left[M\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}$-$\mathbf{6} \mathrm{H}_{\mathbf{2}} \mathrm{O}$ ($M=\mathrm{Nd}, \mathrm{Sm}$ or Gd)

Louis J. Farrugia, ${ }^{\text {a }}{ }^{*}$ Robert D. Peacock ${ }^{\text {a }}$ and Brian Stewart ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, and ${ }^{\text {b }}$ Department of Chemistry and Chemical Engineering, University of Paisley, Paisley PA1 2BE, Scotland
Correspondence e-mail: louis@chem.gla.ac.uk

Received 26 June 2000
Accepted 4 September 2000
Data validation number: IUC0000241
The three title complexes, namely pentasodium tris($2,2^{\prime}$ oxydiacetato)neodymium(III) bis(tetrafluoroborate) hexahydrate and its samarium(III) and gadolinium(III) analogues, (I)-(III), respectively, are isomorphous and isostructural and have crystallographic D_{3} symmetry. The lanthanide metal ions are nine-coordinate, binding to three O atoms of three oxodiacetate ligands. One Na^{+}ion is octahedrally coordinated to six O atoms and the other Na^{+}ion is octahedrally coordinated to four O atoms and two F atoms. The structure is effectively an infinite three-dimensional polymer, consistent with the exceptional crystal quality. The racemic solutions spontaneously resolve on crystallization. For the individual crystals selected for structural analysis, the Nd and Sm complexes have the Λ configuration, while the Gd complex has the Δ configuration. The lanthanide-oxygen distances show the expected contraction of $c a 0.02 \AA$ with increasing atomic number for the lanthanide metal.

(I) $M=\mathrm{Nd}$
(II) $M=\mathrm{Sm}$
(III) $M=\mathrm{Gd}$

Experimental

The three title complexes were synthesized in an identical manner. The oxide $M_{2} \mathrm{O}_{3}(0.5 \mathrm{mmol})(M=\mathrm{Nd}, \mathrm{Sm}$ or Gd$)$ was stirred in an aqueous solution of diglycollic acid (3.0 mmol in 30 ml water) and sodium bicarbonate (3.0 mmol). After an hour, $\mathrm{NaBF}_{4}(2.0 \mathrm{mmol})$ was added, and the solution allowed to evaporate in air, yielding large
well formed crystals of the complexes. Small samples for the crystallographic analyses were cleaved from larger crystals.

Compound (I)

Crystal data
$\mathrm{Na}_{5}\left[\mathrm{Nd}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=937.12$
Trigonal, R32
$a=9.7508$ (7) \AA
$c=28.177(2) \AA$
$V=2320.1(3) \AA^{3}$
$Z=3$
$D_{x}=2.012 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
Non-profiled ω scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.425, T_{\text {max }}=0.834$
1134 measured reflections
1001 independent reflections
1001 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.022$
$w R\left(F^{2}\right)=0.055$
$S=1.133$
1001 reflections
77 parameters
H -atom parameters constrained

Compound (II)

Crystal data

$\mathrm{Na}_{5}\left[\mathrm{Sm}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=943.23$
Trigonal, R32
$a=9.7223$ (11) \AA
$c=28.0728(14) \AA$
$V=2298.0(4) \AA^{3}$
$Z=3$
$D_{x}=2.045 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Data collection
Enraf-Nonius CAD-4 diffractometer
Non-profiled ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.352, T_{\text {max }}=0.427$
2301 measured reflections
1085 independent reflections
1085 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.014$
$w R\left(F^{2}\right)=0.037$
$S=1.133$
1085 reflections
78 parameters
H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0227 P)^{2}\right.$ $+0.0430 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=18.5-21.2^{\circ}$
$\mu=1.88 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Cleaved from large crystal, violet
$0.55 \times 0.45 \times 0.10 \mathrm{~mm}$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=29.96^{\circ}$
$h=-1 \rightarrow 13$
$k=-11 \rightarrow 1$
$l=-3 \rightarrow 39$
3 standard reflections frequency: 120 min intensity decay: none

```
\(w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0427 P)^{2}\right.\)
            \(+0.7263 P]\)
    where \(P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }=0.001\)
\(\Delta \rho_{\max }=0.47 \mathrm{e}^{-3}\)
\(\Delta \rho_{\min }=-0.51 \mathrm{e} \mathrm{A}^{-3}\)
Absolute structure: Flack (1983), 121 Friedel pairs
Flack parameter \(=-0.010(18)\)
```

Cell parameters from 25 reflections
$\theta=20.93-22.27^{\circ}$
$\mu=2.12 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Irregular block cleaved from larger crystal, colourless
$0.6 \times 0.4 \times 0.4 \mathrm{~mm}$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=29.98^{\circ}$
$h=-12 \rightarrow 1$
$k=-12 \rightarrow 1$
$l=-39 \rightarrow 39$
3 standard reflections frequency: 120 min intensity decay: 2%
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0034 (2)
Absolute structure: Flack (1983), 209 Friedel pairs
Flack parameter $=-0.014(11)$

Compound (III)

Crystal data

$\mathrm{Na}_{5}\left[\mathrm{Gd}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=950.13$
Trigonal, R32
$a=9.7041(10) \AA$
$c=28.025(6) \AA$
$V=2285.5(6) \AA^{3}$
$Z=3$
$D_{x}=2.071 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
Non-profiled ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.336, T_{\text {max }}=0.433$
2033 measured reflections
1078 independent reflections
1078 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.012$
$w R\left(F^{2}\right)=0.032$
$S=1.073$
1078 reflections
78 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0226 P)^{2}\right.$ $+0.5279 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

The methylene H atoms were placed in calculated positions (C $\mathrm{H}=0.96 \AA$) and refined with a riding model. The initial positions of the H atoms of the water molecules were determined from a difference Fourier map and the H atoms were then refined with a riding model and a common isotropic displacement parameter. All calculations were carried out using the WinGX package (Farrugia, 1999).

For all compounds, data collection: CAD-4 EXPRESS (EnrafNonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the EPSRC for funds towards the purchase of a diffractometer.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst, A24, $351-$ 359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

